JOURNAL OF
PURE AND
APPLIED ALGEBRA

ELSEVIER Journal of Pure and Applied Algebra 135 (1999) 207-223

Skolem properties, value-functions, and divisorial ideals

Paul-Jean Cahen®, Jean-Luc Chabert®, Evan Houston®*, Thomas G. Lucas®

3 Faculté des Sciences de Saint Jéréme, 13397 Marseille cedex 20, France
b Faculté de Mathématiques et d Informatique, 80039 Amiens Cedex 01, France
¢ University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Communicated by A.V. Geramita; received 16 April 1997

Abstract

Let D be the ring of integers of a number field K. It is well known that the ring Int(D)=
{f€K[X]| f(D)C D} of integer-valued polynomials on D is a Priifer domain. Here we study
the divisorial ideals of Int(D) and prove in particular that Int(D) has no divisorial prime ideal.

We begin with the local case. We show that, if ¥ is a rank-one discrete valuation domain
with finite residue field, then the unitary ideals of Int(¥) (that is, the ideals containing nonzero
constants) are entirely determined by their values on the completion of V. This improves on
the Skolem properties which only deal with finitely generated ideals. We then globalize and
consider a Dedekind domain D with finite residue fields. We show that a prime ideal of Int(D)
is invertible if and only if it is divisorial, and also, in the case where the characteristic of D
is 0, if and only if it is an upper to zero which is maximal. © 1999 Elsevier Science B.V. All
rights reserved.

1991 Math. Subj. Class.: Primary: 13G05, 13F05, 13F20; secondary: 13B24, 13C05, 13B22,
13B30, 13F30

0. Introduction

If D is a domain, with quotient field K, we consider the ring Int(D) of integer-valued
polynomials on D:

In(D)= { f €K[X]| /(D) D}.

For each ideal A of Int(D), and each a€ D, W(a) = {g(a)| g W} is clearly an ideal
of Int(D), quite naturally called the ideal of values of W at a. The various Skolem
properties of Int(D) give a measure as to what extent an ideal is characterized |

* Corresponding author. E-mail: fma00egh@unccvm.unce.edu.

0022-4049/99/$ — see front matter © 1999 Elsevier Science B.V. All rights reserved.
PH: S0022-4049(97)00159-X



208 P.-J. Cahen et al | Journal of Pure and Applied Algebra 135 (1999) 207-223

its ideal of values [1-3,8,9,11,17]. We say that Int(D) has the Skolem property if
each finitely generated ideal 2 of Int(D) such that (a)=D for all a€D is, in fact,
equal to Int(D); we say that Int(D) has the strong Skolem property if, whenever
two finitely generated ideals U and B are such that A(a)="B(a) for all a€ D, then
A = B. For instance, Int(Z) has the Skolem property [20] and even the strong Skolem
property [3]; however, we emphasize that this property is restricted to finitely generated
ideals.

In this paper we first deal with the case where D=V is a rank-one discrete valuation
domain with finite residue field. Since ¥ is a local ring, we cannot expect Int(}') to
have the Skolem property, let alone the strong Skolem property, indeed the principal
ideal U generated by a unit-valued polynomial (for instance, | + tX where ¢ is in
the maximal ideal) is such that U(a)=V for each a€V. However we do have the
Skolem properties restricted to the unitary ideals, that is, the ideals containing nonzero
constants. These are the almost Skolem and almost strong Skolem properties (that
McQuillan called the Hilbert and strong Hilbert properties [18]).

Letting m be the maximal ideal of V, an integer-valued polynomial can be seen as a
uniformly continuous function in the m-adic topology, hence as a continuous function
from the completion V of V into itself. We extend the notion of ideal of values and
associate to each ideal 2 of Int(D) a value-function Wy (on 17). We then show that
the unitary ideals are entirely characterized by their value-functions. We emphasize that
there is no longer any restriction to the finitely generated ideals (which simply turn
out to be those ideals whose value-functions are locally constant).

Extending these notions to fractional ideals, we then compare the value-functions of
an ideal 9 and its inverse A~ We give conditions for an ideal 2 to be divisorial, that
is, A=(A"")"!, and then easily exhibit an ideal which is divisorial but not finitely
generated. (Recall that Int(}) is a Priifer domain, that is, every finitely generated ideal
1s invertible [10, Proposition 2.3].)

Finally, we globalize and consider the case where D is a Dedekind domain with
finite residue fields. We characterize the unitary ideals by the collection of their
m-adic value-functions, at every maximal ideal m of D. Then we show that a prime
ideal of Int(D) is invertible if and only if it is divisorial, and also, in the case where
the characteristic of D is 0, if and only if it is an upper to zero which is maximal.
It follows that if D is the ring of integers of an algebraic number field, in particular
if D=2Z (the ring of integers), then no prime ideal of Int(D) is divisorial. '

! This paper was under preparation while the first two authors were finishing their book on intcger-valued
polynomials. This book has now appeared [5]. Some results, dealing with the local case, were included
in the book; for consistency they are stated and proved in this paper. Note that our point of vicw here
is somewhat different: for simplicity, we restrict ourselves to a discrete valuation domain V', moreover, a
value-function is considered as a function on the completion ¥ (whereas, in the book, it is considered as a
function on ¥). Note also that the results derived here by globalization for a Dedekind domain are completely
new.
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1. Value-functions of unitary ideals and Skolem properties

We let V' be a rank-one discrete valuation domain with finite residue field, m be its
maximal ideal, v be the corresponding valuation, and ¢ be a generator of the maximal
ideal. A polynomial can be viewed as a uniformly continuous function (from ¥ to K)
in the m-adic topology. We also consider the completion V of V, and we denote by
m its maximal ideal. We continue to denote by v the extension of the valuation to the
completion.

Let A be an ideal of Int(V). For acV, if the ideal of values U(a) is a nonzero
ideal, it is of the form m”, where n= inf{v(f(a))| f €UA}. We thus define a function
from ¥ to N =NU{oo}: to each a€ V' corresponds the integer n, if A(a) #(0), and oo
otherwise (v(0)=o00). In fact, we can extend this function to v, considering an integer-
valued polynomial as a continuous function from VitV (in the m-adic topology).
For each ideal 2 of Int(}'), we finally obtain a function

"I’\)[ . ? —N
such that
Por(x) = inf {v(f(x)) | f €U}

for xe V. We say that Wy is the value-function of the ideal 2.
If f is an integer-valued polynomial, we denote by ¥, the value-function of the
ideal generated by f, that is, for each xe V:

Pr(x)=uv(f(x)).
For each ideal A of Int(}'), we then have
Py = inf{ ¥ | f€A}.

Let us give an example. Recall that the unitary prime ideals of Int(}), that is, the
prime ideals above m, are in one-to-one correspondence with the elements of V [7,
Proposition 5.4]: to each x€ ¥ corresponds the maximal ideal

M, ={felnt(V)| f(ax)em}.
The value-function of 9, is the function such that

1, ifx=a,
lII‘JR’(X):{O ifx#a

We next prove that the value-function ¥y of an ideal U must satisfy a property of
continuity.

Lemma 1.1. For each ideal W of Int(V), the value-function ¥y : VN is upper
semicontinuous, where N is endowed with the discrete topology. That is, for each
x€V, there exists a neighborhood U of x such that Ya(y) < Wo(x) for each yeU.
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Proof. Let x be in V. If Por(x) =00, the assertion is obvious. Hence we may
assume that Py(x)# oo: there is g€ such that v(g(x))= Py(x). Since g is a
continuous function, there is a neighborhood U of x such that, for each y € U, one has
u(g(y))=v(g(x)), and in particular, ¥or(y) <v(g(y)) = Pulx). U

If an ideal 2 is unitary, that is, contains nonzero constants, its ideals of values are
nonzero ideals: they contain the constants which lie in 2. Hence ¥ is a function
from ¥ to N. Since Yyr is upper semicontinuous and Vis compact, let us note also
that Wy is bounded above. Using the fact that Vis compact and the Stone—Weierstrass
theorem [5, Theorem I11.3.4] (every continuous function from V to V can be uniformly
approximated by an integer-valued polynomial), we can prove the following converse
of Lemma [.1.

Lemma 1.2. Every upper semicontinuous function ¥ : V —N is the value function of
a unitary ideal W of Int(V).

Proof. Let A= {gent(¥V)|¥,> ¥}. Clearly U is an ideal. We show that it is the
ideal we are looking for. As ¥ is upper semicontinuous and V is compact, ¥ is
bounded above by an integer M. Hence, t* belongs to U and A is unitary By definition
Por = inf{¥, | g€ U} > ¥. It remains to show that Poy < ¥. Fix x€ V, and let n=P(x).
There exists a clopen neighborhood U of x such that ¥(y) <n for each y€ U. By the
Stone—Weierstrass theorem there exists a polynomial f €Int(¥) such that v(f(y))=n
for each yeU, and o(f(y))>M for each y¢U. Then ¥y > ¥, and hence, fcU.
Consequently, Por(x) < ¥ (x)=n=¥(x). O

The next theorem shows that the unitary ideals, are entirely determined by their
value-functions [5, Theorem VIL.3.7]. Again, we use compactness of V' and the Stone-
Weierstrass theorem.

Theorem 1.3. Let N be a unitary ideal of Intl(V'), and f€Int(V). Then feU if and
only if ¥y > ¥y

Proof. By definition, if /€U, then ¥, > Wo;. We must prove the converse. Since U is
umtary, it contains a nonzero constant a, we let k = v(a). Suppose that ¥y > ¥or. Then,
for xeV, f(x) belongs to the ideal QI(x)V {(generated in v by the ideal of values
A(x)). Since A(x) is dense in QI(x)V, there is in particular a polynomial g, € ¥ such
that v( f(x)—g.(x)) > k. Since f and g, are continuous, there is a clopen neighborhood
U, of x such that v(f(z) — ¢g«(z)) >k, for each z€ U,. Since Vs compact, it can be
covered by finitely many such clopen sets, say Uy, ..., U;, and there are corresponding
elements g1,...,gs of A such that v(f(z) — ¢i(z)) >k for z€ U;. These subsets being
clopen sets, we can require them to have pairwise empty intersections. From the Stone—
Weierstrass theorem the characteristic function of each clopen set U; can be uniformly
approximated modulo m* by an integer-valued polynomial ¢;. Let z€ V. Then z belongs
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to one and only one of these clopen sets, say U;; we have ¢;(z) = 14a;, and ¢;(z) =,
for i # j, where v(«;) > k for each i. Letting g= >, g;¢;, then g€ U and,

f(2) = 9(2)= f(2) — 9j(2)g(z) — Z ¢i(z)gilz) = f(z) — g(2) — Z %:gi(z).
i# i

Thus, for each z € V., we have v(f(z)—g(z)) > k. Hence h=a~'{ f —gy&Int(¥). Finally
f =g+ ah belongs to A. O

Corollary 1.4. Let W and B be two ideals of Int(V).
(i) Suppose that B is unitary. Then WC B if and only if Wy > V.
(i) Suppose that W and B are unitary. Then W=B if and only if Yoy = Vg.

The last assertion expresses a Skolem property with respect to the unitary (but not
necessarily finitely generated) ideals of Int(}).
From Lemma 1.2 and Corollary 1.4, we immediately derive the following.

Proposition 1.5. Every upper semicontinuous function ¥ : V— N is the value Sfunction
of one and only one unitary ideal W of Int(V).

Finally, we characterize the unitary finitely generated ideals. If the unitary ideal 2 is
generated by gi,...,4s, then, for each x¢ V, there exists a neighborhood U of x such
that v(g;(y)) = v(gi(x)) for each ye U and each i€{l,...,k}. Hence, ¥o(y)= Py(x)
for each y€U. Therefore the value-function Wy is continuous, that is to say, locally

constant. In fact, Wy takes only finitely many distinct values since ¥ is compact.
Conversely, we have the following:

Proposition 1.6. Every locally constant function ¥:V — N is the value-function of
one and only one finitely generated unitary ideal W of Int(V).

Proof. Let A={geclnt(V)|¥,> ¥}, as in Lemma 1.2. It follows from the previous
results that U is the unique unitary ideal with value-function ¥; it remains to show that
it is finitely generated. The topological space V is covered by finitely many disjoint
open sets Uy,...,U, and there are integers n,,...,n, such that ¥(a)=n;, for ac U,.
From the Stone—Weierstrass theorem there exists a polynomial f&Int(}) such that
v(f(x))=n; for x€U,, in other words, such that ¥, = ¥. It is now straightforward to
show that W =(a, /'), where a is an arbitrarily chosen nonzero constant in 2. [

From Corollary 1.4 and Proposition 1.6, we immediately derive the following.

Corollary 1.7. The value-function Wy of a unitary ideal W is locally constant if and
only if W is finitely generated.

Remark 1.8. (1) Following Gilmer and Smith [14, Theorem 2.8], we could say in the
case of Int(Z) that the value-function, restricted to Z, of a unitary finitely generated
ideal is periodic.
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(2) In general, the nonunitary ideals are not characterized by their ideals of values.
Consider for instance the polynomial /=1 + tX. For each n the principal ideal (/")
is such that its ideal of values is everywhere equal to D. Yet these ideals are clearly
distinct.

(3) In general, the unitary ideals are not characterized by their ideals of values
on ¥V only (that is, by the restriction of their value-function to V). For instance if
M, is a maximal ideal corresponding to a¢ V, then Yy (a)=0 for each acV, while
M, # Int(V'). Note also that, in this case, Wy, restricted to V' is locally constant (in
fact, constant) while 9, is not finitely generated.

(4) If we restrict ourselves to finitely generated ideals, it is known that 9 and B are
equal if and only if Yor(a) = Wy(a) for each a€ ¥ (this is the almost strong Skolem or
strong Hilbert property [18, Lemma 2.6]). This can easily be derived from the previous
results. Indeed, suppose that 2 and B are finitely generated and that Yy (a)= ¥y(a)
for cach a€ V. Then Wy = ¥y, since Wy and ¥y are locally constant and V is dense
in V. Hence A =B.

(5) Note that cur proof of Proposition 1.6 actually provides a new demonstration
of the fact that a finitely generated unitary ideal of Int(V) can be generated by two
elements, one of them being an arbitrarily chosen nonzero constant {10, Proposition
3.5].

(6) Assuming that D is a one-dimensional local Noetherian domain, with finite
residue field, the Stone—Weierstrass theorem applies if (and only if) D is also ana-
lytically irreducible {6, Theorem p. 53]. We could generalize the results of this section
to this situation. In particular the unitary ideals are again characterized by their ideals
of values: =B if and only if A(x)D =B(x)D for each xe D [5, Theorem VII.3.7].

2. Value-functions of fractional ideals

Since we wish to study invertible and divisonal ideals, it is natural to extend the
previous notions to fractional ideals. We define the value-function ¥, of a rational
function ¢ by ¥,(x)=v(p(x)). If x is a root of ¢, then ¥y(x)=o00 and if x is a pole,
then ¥,(x)= —oc. Then we define the value-function of a fractional ideal 2 by

Wyr(x) = inf{ ¥p(x) | @ €2} = inf {v(e(x)) | o€ A}

It is a function from ¥ to ZU {—00,00}. In fact, if A is a nonzero fractional ideal,
Por(x) is an integer for every x¢ v except at most finitely many. Indeed U contains a
nonzero polynomial f, and ¥or(x)# oc whenever x is not a root of f; also, since 2
is a fractional ideal, there is a nonzero polynomial g such that g2l is an integral ideal,
and Py (x)# —oo, whenever x is not a root of g.

We first list some elementary properties of the value-functions. The first one is
immediate:
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Lemma 2.1. Let W, B be two fractional ideals of Int(V') and x € V such that Por(x)
and Wg(x) are integers. Then Woup(x)= Wo(x) + ¥Yu(x). In particular, if Wy and
VYo take their values in Z, then Yo = Wy + ¥in.

Corresponding to Lemma 1.1, we also have the following.

Lemma 2.2. Let W be a fractional ideal. The value-function Wy is upper semicon-
tinuous at each point x such that Yo (x)# —oo.

Proof. The result is clear if Py(x) = 00. Otherwise there is a rational function ¢ = f/g
in N such that x is not a root of f and g and ¥,(x)= Wy(x). Thus ¥, =¥ — ¥, is
continuous (that is, constant) in a neighborhood U of x. Since Yo < ¥, Wy is upper
semicontinuous at x (that is, Yor(y) < ¥y(x) for each yeU). O

We may generalize the results of the previous section to a class of fractional ideals.
Let us first give a definition:

Definition 2.3. We say that a fractional ideal 2 of Int(V') is almost-unitary if there
is a nonzero constant ¢ € K such that a2l is unitary, that is, a2l is contained in Int(})
and contains nonzero constants.

Of course the nonzero element ¢ can be taken in V. Moreover, the value-function
of an almost-unitary ideal is bounded below. We leave to the reader the verifications
of the following assertions:

— Let A be an almost-unitary ideal and f < K[X]. Then ¥, > ¥y if and only if f .

— Let W and B be two almost-unitary ideals. Then W =B if and only if Py = Py.

— An upper semicontinuous function from V to Z which is bounded below is the
value-function of one and only one almost-unitary ideal.

— A locally constant function (from V to Z) is the value-function of one and only one
finitely generated almost-unitary ideal.

— The value-function of an almost-unitary ideal  is locally constant if and only if 2
is finitely generated.

The value-function of an integral ideal of Int(}') is positive, hence it is bounded
below. The value-function of a unitary ideal 2 is bounded above (by the valuation
of every nonzero constant d €U). More generally, the value-function of an almost-
unitary ideal is bounded. However, the converse does not hold. For instance, the prin-
cipal ideal generated by the polynomial 1 + ¢tX is not almost-unitary, yet its value-
function is everywhere null. In fact, we may characterize the bounded-valued ideals as
follows.

Proposition 2.4. The value-function of a fractional ideal W is bounded if and only if

there is a rational function @ with no root and no pole in V and a unitary ideal ‘B
such that W= pB,
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Proof. If U= B, where B is unitary and ¢ has no root and no pole, then ¥y is
bounded since ¥ =¥, + P (Lemma 2.1) (and ¥, is, in fact, locally constant).

Conversely, suppose that ¥y is bounded. Write UK[X ]| =y K[X]. We claim that
Y has no root and no pole in V. Indeed, a root of Y would be a common root
of the elements of A, and this would imply ¥o(x)=o00. On the other hand, there
is a nonzero constant a such that iy € q; if x were a pole of ¥, we would have
Por(x) < ¥y(x)= —oo. Then ¥, is bounded. The ideal ' contains some nonzero
constants, it is contained in K[X], and its value-function is bounded. In particular it is
bounded below and, for some integer #, the value-function of the ideal B =¢"yy~'U is
positive. Therefore B is a unitary ideal of Int(¥) and U = @B, where @ =¢""y has
no root and no pole. [

If the value-function of a fractional ideal never takes the value +oo, it follows from
Lemma 2.2 and compactness that it is bounded above. However, the next example
shows that the value-function may fail to be bounded below even though it never
takes the value —oo.

Example 2.5. For each integer n, consider the clopen set U, =¢" + e
Stone-Weierstrass theorem, there is a polynomial f, such that

. From the

- f ns
o fox)) = {0 B

Let U be the ideal generated by the polynomials {f,},en. The ideal U is fractional:
for each n, Xf, is an integer-valued polynomial. The function Wy takes its values in
Z (WCK[X]), yet it is not bounded below (W (") < ¥, (¢")=—n).

3. Divisorial ideals

We now consider the inverse W' = {¢ € K(X)| A C Int(¥)} of a nonzero ideal A.
If pe A" and i € U, then ¢y is an integer-valued polynomial. Hence, for each x € V,
we have v(@(x)(x)) > 0. In other words, we have the following:

Lemma 3.1. If U is a nonzero fractional ideal of Int(V'), then Wo-1 > — ¥qr.

We shall see below that the inequality may be strict, even for a divisorial ideal
(Example 3.8). However, if U is invertible we have the following:

Proposition 3.2. If A is an invertible ideal of Int(V'), then ¥Yo-1 = —¥y.

Proof. Since AA~' =Int(V), there are elements ¢i,...,¢, in A, and Y,..., ¥ in
A", such that @,y +-- -+ @, = 1. Suppose that x € ¥, is not a pole of any of these
functions. Then

QW (x) + -+ o (X (x) = 1.
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There is some index / such that ¢;(x)s;(x) is a unit of V, hence

Por-1(x) S v(¥h(x)) = —v(@i(x)) < — Py (x).

We may conclude that ¥g-1(x) = —¥q(x), from the previous lemma. If now x is a
pole of some ¢;, then Wy(x)=—oo0 and it follows again from the previous lemma
that Wo— (x) =oo (similarly, if x is a pole of some ;, then ¥4y (x)=-oc and
'PQ[(X)ZOO)‘ U

Remark 3.3. It is known that Int(#") is a Priifer domain [10, Proposition 2.3]. This fact
can easily be derived from the results of the first section: let 2 be a nonzero finitely
generated ideal of Int(}'). The value-function Yy is locally constant, that is, continuous,
and from the Stone—Weierstrass theorem there is a polynomial g € K[X] such that
Y, =—Y. If f€U, then ¥ + ¥, >0, hence fg is an integer-valued polynomial.
In particular, g € A" Let I=AA"". This is an ideal of Int(¥) and P~ =0 (since
P+ < ¥,). From Theorem 1.3, we may conclude that 3 = Int(}"), provided we establish
that 3 is unitary. Write AK[X]=hK[X], where £ is a polynomial (that we may suppose
to be in A). Then A~ 'ACK[X]. Since U is finitely generated, there is a nonzero
constant @ € ¥ such that ah~'A C Int(V). Hence ah~' € A", Finally a=hah™' is a
nonzero constant in 3= UAA~",

The converse of Proposition 3.2 is false. Our next result shows that the equation
Por-1 = —¥o; and boundedness together imply divisoriality of 2; Example 3.7 below
shows the necessity of the boundedness condition.

Proposition 3.4. Let U be a fractional ideal of Int(V) such that WYy is bounded
If Yo—1 = =Wy, then W is divisorial.

Proof. Since Wy is bounded, write U = ¢B, where B is unitary and ¢ has no pole
and no root (Proposition 2.4). Denote by B, the divisorial closure of B, that is,
%U:(?B'l)_'. Since B is integral, B, is contained in Int(?) and a fortiori in K[X].
Assuming that Wy =—q, then W1 =— ¥, and Py > ~ ¥z = iy (Lemma 3.1).
Therefore B, C B (Corollary 1.4), hence B, =B since the reverse containment always
holds. It follows that B is divisorial, and so is AW=¢B. O

Let us now turn to the prime ideals of Int(¥'). Recall that the uppers to zero are
the primes of the form B, =gK[X]NInt(V'), where g is an irreducible polynomial
of K[X], while the unitary prime ideals are the ideals YR,. Moreover, qu CM, if
and only if g(x)=0 [7]. Recall also that the uppers to zero which are maximal are
invertible (in fact, their classes generate the Picard group of Int(¥) [10, Proposi-
tion 4.5]); all other primes, that is, the ‘Bq which are not maximal and the M,,
are not divisorial. More precisely we can derive the following from [5, Theorem
VIILS.15].
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Proposition 3.5. Let ‘B be a prime ideal of Int(V). The following assertions are
equivalent:
(i) the ideal ‘B is invertible,
(i) the ideal B is divisorial,
(iii) the ideal B is an upper to zero which is maximal.
In fact, if ‘B is a nonzero prime ideal which is not invertible, then B =Int(V).

Remark 3.6. In [5, Theorem VIIL.5.15], the previous proposition was more generally
established for Int(D), with D a local one-dimensional unibranched domain. In the
present situation, Int(¥') is a two-dimensional Priifer domain [10, Proposition 2.3].
We could then note that for a Priifer domain R,

(a) a maximal ideal M of R is either invertible or such that M'=R [12, Corollary
3.1.3],

(b) if the dimension of R is at most two, then a prime ideal B of R is either
divisorial or such that B~'=R [12, Theorem 4.1.22].

Most of the conclusions of the previous proposition could then be derived from these
results (note also that it is very easy to prove that the unitary maximal ideals are not
finitely generated, hence not invertible [5, Corollary V.2.4]).

For the maximal ideals, we could also use the easy fact that Int(D) is completely
integrally closed if and only if the same holds for D [5, Exercise VI.10], and then note
that, for a completely integrally closed domain, we have the same conclusion as (a)
above [13, Corollary 34.4].

We end this section with two examples. The first is a nondivisorial ideal U with
%H_IZ_%H'

Example 3.7. The ideal U =(1/X)B, is not divisorial (since Py is not divisorial),

and yet Wy -1 = — Wr. Indeed, A~ =X P;' =X Int(¥") [Proposition 3.5]. If x # 0, then
For(x) = —o(x)+ ¥y (x)= —v(x), and Wy (x) =v(x). If x=0, then Py-1(0) =c0; we
must show that ¥y (0)= —oo. In case V is the valuation ring of the p-adic valuation in

Q, let h,=(X — 1)---(X —n+ 1)/n!, then h, € A and h,(0)=(-1)"1. The general
case may be handled in a similar way by using an appropriate regular basis of Int(});
see [5, Section I1.2].

The second example is a divisorial ideal which is not invertible, as in [5, Example
VIIL5.16]. We use it below for the global case [Example 4.3].

Example 3.8. As in Example 2.5, we consider the clopen sets U, = "+ "2, We then
let P, be the locally constant function with value 1 on U, and 0 outside. It is the value-
function of a finitely generated (thus invertible) unitary ideal U, [Proposition 1.6]. The
intersection W = (2, A, is a divisorial ideal since it is the intersection of invertible
ideals. The nonzero constant ¢ is in each U, (since v(¢) > ¥,(x), for each x € V) so
that ¥ is a unitary ideal. To show that 2 is not finitely generated, it suffices to prove
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that Wy is not locally constant. We prove that, for each k, we have Wyr(t*)>1 and
Por(tF + t*+1)=0. Indeed, Por(t*)> 1, since A C ;. On the other hand, the clopen
set W, =¢* + t**! + W**? does not meet any of the clopen sets U,. From the Stone-
Weierstrass theorem, there is a polynomial g; whose value-function ¥, takes the value
0 on W, and 1 outside. Hence ¥, > ¥,, and it follows from Theorem 1.3 that we
have g; € U,,. Since this holds for each n, we have g, € U, hence Yo < ¥,,. Therefore
Por(tk + 1y =0.

Finally, we note that ¥4 #—¥qr, even though U is divisorial. Indeed, it follows
from Lemma 3.1 that Woy—1(¢* +£71) > — Wor(r* +£4+') =0, whence, from Lemma 2.2,

we have ¥o-1(0) > 0. However, again by Lemma 2.2, ¥g(0) > 1, since ‘I{f(t") >1.

4. Globalization

We now let D be a domain with quotient field X and are mainly concerned with the
case where D is a Dedekind domain with finite residue fields. For each maximal ideal
m of D, Dy, is then a discrete valuation domain; we denote by vy, the corresponding
valuation and by Dy the completion of Dy, with respect to v;n. We define the m-adic
value-function ¥, gy of a fractional ideal 2 of Int(D) as

P, a(x) = inf{vm(p(x)) | @ € AL

This is a function from Dy, to ZU {—00,00}. Recall that, for each maximal ideal m of
D, we have (Int(D))m =Int(Dy,) [4, Corollaire 5, p. 303]. Hence, for each fractional
ideal A of Int(D), the function ¥, gr is the value-function of the ideal Wy, of Int(Dy,).
As in the local case, let us say that a fractional ideal of Int(D) is almost-unitary if
it is the product of a unitary ideal by a nonzero constant. We derive immediately the
following from Theorem 1.3.

Theorem 4.1. Let D be a Dedekind domain with finite residue fields and W, B be
two almost-unitary ( fractional) ideals of Int(D). Then W =B if and only if, for each
maximal ideal m of D, we have ¥y, gy = ¥y, .

The following result generalizes Corollary 1.7.

Proposition 4.2. Let D be a Dedekind domain with finite residue fields and U be
an almost-unitary ( fractional) ideal of Int(D). Then N is finitely generated if and
only if, for each maximal ideal m of D, the m-adic value-function Wy, o is locally
constant.

Proof. If U is finitely generated, then so is each ., and each m-adic value-function
Y91 is locally constant. For the converse, we may as well assume that U is a unitary
ideal (since a¥ is finitely generated if and only if U is finitely generated), hence that
A is contained in Int(D) and contains a nonzero constant d. There are finitely many
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maximal ideals m containing d. For each such m, Uy, is finitely generated [Corol-
lary 1.7] and we may choose a set of generators contained in 2. Let B be the ideal
(finitely) generated by d and the finite union of these finite sets of generators. Then
A =B since, for each maximal ideal m of D, we have B, = Wy, (this is clear if m
contains d, from the definition of B, and in the other case, d is a unit in Dy, and thus
By =WUyp=Int(D)). O

For every Dedekind domain D with finite residue fields we can produce an example
of a divisorial ideal of Int(D) which is not invertible, as in the local case [Example 3.8].
We note that Alan Loper has also given such an example (in Int(Z)) [16].

Example 4.3. Choose a maximal ideal m and a generator ¢ of mDy, in D. In
Example 3.8 we considered a sequence of unitary finitely generated ideals ¥, of
Int(Dw), each one corresponding to a locally constant function ¥, (on ﬁr\n) such
that ¥, takes only the values 0 or 1, ¥,(¢")=1, and ¥,(t* + **')=0 for each k and
each n. Let B, = (U, NInt(D)) + mInt(D). Then B, is a unitary finitely generated
ideal of Int(D). If ¥y,  denotes the m-adic value-function of B, then ¥, g = ¥,.
On the other hand, note that for each maximal ideal n m, the n-adic value-function
of B, is null (since B, contains m). The intersection B = ﬂ:":o%,, is a divisorial
ideal since it is the intersection of invertible ideals. It contains m, hence it is a unitary
ideal. Finally we show, as in Example 3.8, that the m-adic value-function ¥, g of
B is not locally constant, and it follows from Proposition 4.2 that B is not finitely
generated. On the one hand, for each £, we have lI’nLQ;(tk)Z 1, since BCB;. On
the other hand, we have seen in Example 3.8 that there is a polynomial g; (that
we may choose in Int(D)) such that vy, (gi(x))> ¥u(x), for each x € Dy and each
n, and also such that vy(gi(t* + t**1))=0. Since the n-adic value-function of B,
is null, for n#m, it follows from Theorem 4.1 that g; € B,. Finally g; € B, hence
st + ) <omlge(tF + 1)) =0.

We determine now which prime ideals are invertible or divisorial. We shall see that,
as in the local case, the two conditions are equivalent [Proposition 3.5], but also that,
contrary to this case, an upper to zero which is maximal is not necessarily invertible.
We then start with some considerations on uppers to zero, relaxing first the hypothesis
that D is a Dedekind domain. Recall that the uppers to zero of Int(D) are always of
the form B, =gK[X]NInt(D), where g is an irreducible polynomial in K[X] (that can
be chosen with coefficients in D) [5, Corollary V.1.2].

Lemma 4.4. Let D be a domain (with quotient field K), and q € D[X] be a polynomial
which is irreducible in K[X . If the upper to zero B, is invertible, then there exists
a nonzero constant d € D such that (d/q) € *Bq_].

Proof. If ﬂSq“Bq_] =Int(D), then (%qK[X])(“Bq_IK[X]):K[X]. Since P K[X]=
gK[X], we derive ‘Bq_lK [X1=(1/¢)K[X], and the result follows immediately. [J
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When the upper to zero B, is maximal, we also have the following:

Lemma 4.5. Let D be a domain (with quotient field K), q € D[X] be a polynomial
irreducible in K[X] such that the upper to zero B, is maximal, and d be a nonzero
constant. Then the rational function d/q is such that (d/q) < ‘Bq_‘ if and only if it is
integer-valued.

Proof. Let m be a maximal ideal of D and a€D. Since B, is maximal, it is not
contained in the maximal ideal My, , = {f € Int(D)| f(a) € m}, hence there is h€'B,
with A(a) ¢ m. If (d/q) e%q_l, then (d/q)h is integer valued, and hence, (d/q)(a) € Dn,.
This holds for each maximal ideal m and each a € D, hence it follows that d/q is integer
valued.

Conversely, if the rational function d/q is integer valued, its product by an element
of B, =¢gK[X]NInt(D) is an integer valued polynomial, and hence, (d/q) € ‘Bq_]. O

Proposition 4.6. Let D be a domain (with quotient field K), and q € D[X] be a poly-
nomial irreducible in K[X] such that the upper to zero B, is maximal. Then the
following assertions are equivalent:

(i) B, is invertible,

(ii) there is a nonzero constant d € D such that (d/q) € q_',

(it1) there is a nonzero constant d € D such that the rational function d/q is integer

valued,
(iv) B, ¢ K[X],
(v) B, #Int(D),

(vi) B, is divisorial.

Proof. (i)=>(ii) follows from Lemma 4.4 and (ii) < (iii) from Lemma 4.5.

(ii) = (iv) = (v) is obvious.

(v)=(iv): By way of contradiction, suppose that ‘Bq_l CK[X] and let (pe‘l‘q_'.
Then there is a nonzero d in D such that d¢ € Int(D). Since B, is maximal and
does not contain d, there are elements # € B, and f € In(D) such that 1 =4 + df.
Multiplying by ¢, we obtain ¢ = ph + @df € Int(D). Thus ‘Bq_l = Int(D).

(iv)=(i): If B, is not invertible, then %q*}}y;l =%,. Hence (‘JBqK[X])*Bq"l =
PB,K[X], that is, (gK[X])B; ' =gK[X]. It follows that ' CK[X].

Hence (i)—(v) are equivalent. On the other hand, (i)=(vi)=-(v) is obvious, and
hence, (vi) is also equivalent to (i). O

Returning to the case where D is a Dedekind domain with finite residue fields, we
show now that a prime ideal is invertible if and only it is divisorial. Recall that the
unitary prime ideals above a maximal ideal m of D are maximal and in one-to-one
correspondence with the elements of 5;1: to « 65,\,1, corresponds the maximal ideal

DMy ={f € In(D) | om(f(2)) >0}
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Recall also that an upper to zero B, is contained in an My, , if and only if g(a)=0.
(All this can immediately be derived from the local case [7].)

Proposition 4.7. Let D be a Dedekind domain with finite residue fields and ‘B be a
prime ideal of Int(D).

(1) B is invertible if and only if it is divisorial In fact, if ‘B is a nonzero prime
ideal which is not invertible, then ="' =Int(D).

(i1) If B is invertible, then it is an upper to zero which is maximal.

Proof. If P is a maximal upper to zero which is not invertible, we have seen that
P~ =Int(D) [Proposition 4.6]. It remains to show that we have the same conclusion
if $B is unitary, or an upper to zero which is not maximal.

— First consider the case where B =9y, 4 is a maximal unitary ideal. It follows from
Proposition 3.5 that (B,,)~'=Int(Dy,). For each maximal ideal n#m, we have
B, = Int(Dy,), whence again (B,,)~' = Int(Dy). Therefore P~ =Int(D) (it is well
known that, for each fractional ideal U and each multiplicative subset S, we have
(A Ds S (As)™).

— Next consider the case where f=¢gK[X] N Int(D) is an upper to zero which is
not maximal. Let ¢ € B~'. For some maximal ideal m, P =gK[XTN Int(Dyy) is
not maximal. For such an m, ¢ € (%B,,)~', and it follows from Proposition 3.5 that
@ € Int(Dyy). In particular, ¢ € K[X] and, for each a € D, we have ¢(a) € D,. Now
let n be a maximal ideal for which %, is maximal, so that P is not contained in
any unitary prime ideal above n. For each a € D, there is a polynomial g € B such
that g(a) ¢ n. It follows that ¢g is integer valued and that ¢(a) € Dy. Finally we
may conclude that ¢ € Int(D). O

Contrary to the local case, we shall see that a maximal upper to zero is not al-
ways invertible when the characteristic of D is not zero [Example 4.11]. We first
study under which condition no prime of Int(D) is invertible. This is linked with the
Skolem property and the notion of d-ring simultaneously introduced by Brizolis [1]
and Gunji and McQuillan [15]. So let us recall the following [5, Proposition VIIL.2.3;
15, Proposition 1]).

Proposition 4.8. Let D be a domain (which is not a field). The following assertions
are equivalent:

(i) each integer valued rational function on D is in fact a integer valued poly-
nomial,

(i) for each non constant polynomial [ in D[X), there exists an element a€ D
such that f(a) is not a unit of D,

(iii) for each non constant polynomial [ in D[X], the intersection of the maximal
ideals m of D for which f has a root modulo m is (0).
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Under these equivalent conditions, D is said to be a d-ring. It is known that if
D is a Noetherian d-ring of characteristic zero, then no upper to zero in Int(D) is
maximal [5, Lemma VIL5.11]. In fact, for a Dedekind domain with finite residue
fields, whatever its characteristic, the d-ring property is equivalent to the fact that no
(maximal upper to zero) prime ideal is invertible:

Proposition 4.9. Ler D be a Dedekind domain with finite residue fields. The following
assertions are equivalent:
(i) D satisfies the Skolem property,
(i1) D is a d-ring,
(iii) no prime ideal of Int(D) is invertible.

Proof. The equivalence of (i) and (ii) is recalled here for completeness. It holds even
if D is a one-dimensional Noetherian domain with finite residue fields [S, Coroliary
VILS.3].

Suppose now that some prime ideal of Int(D) is invertible. Such a prime is a maximal
upper to zero B, [Proposition 4.7]. It follows from Proposition 4.6 that there is a
nonzero constant d such that the rational function d/q is integer valued (but clearly
not a polynomial). Therefore D is not a d-ring.

Conversely, if D is not a d-ring, some non-constant polynomial g in D{X] takes
only unit values on D. We may choose g to be irreducible in K[X] [5, Exercise
VIL6]. Clearly the upper to zero P, is principal (generated by g), thus a fortiori
invertible. [

Although it follows from this proof that if there is an invertible prime ideal, then
there is a principal prime ideal, we emphasize that, even in the local case, an invert-
ible (upper to zero) prime ideal is not always principal (for a characterization of the
principal prime ideals, see [5, Proposition VIIL.5.6]).

It is known that the global rings of arithmetic, that is, rings of integers of an al-
gebraic number field or a function field, are d-rings [5, Examples VIL.2.12]. From
Propositions 4.7 and 4.9 we then derive the following:

Corollary 4.10. Let D be the ring of integers of an algebraic number field (resp., a
function field), that is, the integral closure of 7 (resp., F,[T]) in a finite algebraic
extension of Q (resp., F4(T)). Then there are no divisorial prime ideals in Int(D). In
fact, for each nonzero prime ideal B of Int(D), we have B~' = Int(D).

We are ready for an example of a maximal upper to zero which is not invertible.
(This is essentially the same as in [5, Exercise V.14] where we gave an example of a
d-ring with a maximal upper to zero, without noting, however, that no prime of Int(D)
was invertible.)
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Example 4.11. Let D=F,[T] be the ring of polynomials with coefficients in a finite
field [, of characteristic p, and let g=X” + 7. Then *B, is a maximal upper to zero
in Int(D) which is not invertible.

— Let us show that B, is maximal. Fix a maximal ideal m= fD of D. It suffices to

show that g has no root in the completion Dy. This completion is isomorphic to
the ring of power series F,[[Z]] with f corresponding to Z and F, a subfield of F,.
Writing T in F,[[Z]] as B(Z)= by +byZ + byZ%> + - - -, we claim that b, # 0. Indeed,
if f=fo+ AT+ -+ fuT", then Z= fo+ f1b(Z)+ - - + fub(Z)" in F,[[Z]]. Thus
Sfo+ fibo+ -+ fubi=0 and fib; + 2f2bob) + -+ + nfb2" by =1. On the other
hand, for each & € Dy, writing o = S ¢ Z" in F,[[Z]], we obtain «” = 3" ¢/ZP. Thus
never of + 7 =0.
— It follows from Corollary 4.10 that ¥, is not invertible.

Another reason why B, is not invertible in the previous example, in connection with
the fact that D is a d-ring, is that g has a (multiple) root modulo each maximal ideal
m of D. Assuming now that D is a Dedekind domain with finite residue fields, we
may complete the characterization given in Proposition 4.6 as follows.

Lemma 4.12. Let D be a Dedekind domain with finite residue fields, and q € DX be
a polynomial which is irreducible in K[X] such that the upper to zero B, is maximal.
Then B, is invertible if and only if the set of maximal ideals m of D such that q
has a root module m is finite.

Proof. Suppose that B, is invertible. It follows from Proposition 4.6 that there is a
nonzero constant d € D such that (d/q) is integer valued. If m is a maximal ideal of
D such that ¢ has a root modulo m, that is, g(a) € m, for some a €D, then d € m.
Therefore the set of maximal ideals such that ¢ has a root modulo m is finite.

Conversely, for each maximal ideal m of Int(D), the ideal (*B,)m is maximal, hence
invertible in Int(Dy,) [Proposition 3.5]. It follows from Proposition 4.6 that there is
a nonzero constant d € D such that (d/g)€ Int(Dy,). If the set of maximal ide-
als such that ¢ has a root modulo m is finite, let nt,...,m, be these ideals and
di,...,d, be the corresponding nonzero constants. It follows that the rational function
(IT;_, d:)/q is integer valued. From Proposition 4.6 again, we may conclude that 8, is
mvertible. O

If D is of characteristic 0, we can derive that the maximal uppers to zero are
invertible from the previous lemma and the following.

Lemma 4.13. Let D be a Dedekind domain with finite residue fields and q € D[X] be
a polynomial which is irreducible in K[X] such that the upper to zero B, is maximal.
If D is of characteristic 0, then the set of maximal ideals m of D such that q has a
root modulo m is finite.
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Proof. For each maximal ideal m of D, ¢ has no root in 5:1, since “Bq is maximal.
Suppose that m is a maximal ideal of D such that ¢ has a root modulo m. It follows
from Hensel’s lemma [19, Theorem (44.4)] that such a root of ¢ must be a multiple
root, hence also a root of the derivative ¢’. Since g is irreducible and the characteristic
of D is 0, g and ¢’ are coprime in K[X]. Hence there are polynomials u and v, with
coefficients in D, and a nonzero constant d such that ug + vg’ =d. Then m contains d.
Finally there are finitely many such maximal ideals m. O

As in the local case, we thus obtain a complete characterization:

Theorem 4.14. Let D be a Dedekind domain with finite residue fields and B be
a prime ideal of Int(D). If D is of characteristic 0, the following assertions are
equivalent:

(i) the ideal B is invertible,

(ii) the ideal ‘B is divisorial,

(iil) the ideal B is an upper to zero which is maximal.
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