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Abstract 

Let D be the ring of integers of a number field K. It is well known that the ring Int(D) = 
{~EK[X] 1 f(D) CD} of integer-valued polynomials on D is a Priifer domain. Here we study 
the divisorial ideals of Int(D) and prove in particular that Int(D) has no divisorial prime ideal. 

We begin with the local case. We show that, if V is a rank-one discrete valuation domain 
with finite residue field, then the unitary ideals of Int( V) (that is, the ideals containing nonzero 
constants) are entirely determined by their values on the completion of V. This improves on 
the Skolem properties which only deal with finitely generated ideals. We then globalize and 
consider a Dedekind domain D with finite residue fields. We show that a prime ideal of Int(D) 
is invertible if and only if it is divisorial, and also, in the case where the characteristic of D 

is 0, if and only if it is an upper to zero which is maximal. 0 1999 Elsevier Science B.V. All 
rights reserved. 

I991 Math. Subj. Class.: Primary: 13G05, 13F05, 13F20; secondary: 13B24, 13CO5, 13B22, 
13B30, l3F30 

0. Introduction 

If D is a domain, with quotient field K, we consider the ring Int(D) of integer-valued 
polynomials on D: 

WD)= {~EKP'II~(D)CD). 

For each ideal ‘2I of Int(D), and each a ED, aLI(a) = {g(a) ( g E ‘91) is clearly an ideal 
of Int(D), quite naturally called the ideal of values of ‘%!I at a. The various Skolem 
properties of Int(D) give a measure as to what extent an ideal is characterized I 
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its ideal of values [l-3,8,9, 11, 171. We say that Int(D) has the Skolem property if 
each finitely generated ideal ‘U of lnt(D) such that %(a) = D for all a ED is, in fact, 
equal to Int(D); we say that Int(D) has the strong Skolem property if, whenever 
two finitely generated ideals 5x and ‘B are such that %(a) = ‘B(a) for all a ED, then 
$8 = $23. For instance, Int(Z) has the Skolem property [20] and even the strong Skolem 
property [3]; however, we emphasize that this property is restricted to finitely generated 
ideals. 

In this paper we first deal with the case where D = V is a rank-one discrete valuation 
domain with finite residue field, Since V is a local ring, we cannot expect lnt( V) to 
have the Skolem property, let alone the strong Skolem property, indeed the principal 
ideal 2I generated by a unit-valued polynomial (for instance, 1 + tX where t is in 
the maximal ideal) is such that ‘U(a) = V for each a~ V. However we do have the 
Skolem properties restricted to the unitary ideuls, that is, the ideals containing nonzero 
constants. These are the almost Skolem and almost strong Skolem properties (that 
McQuillan called the Hilbert and strong Hilbert properties [ 181). 

Letting m be the maximal ideal of V, an integer-valued polynomial can be seen as a 
uniformly continuous function in the nr-adic topology, hence as a continuous function 
from the completion p of V into itself. We extend the notion of ideal of values and 
associate to each ideal $8 of Int(D) a value-function Yv( (on v^). We then show that 
the unitary ideals are entirely characterized by their value-functions. We emphasize that 
there is no longer any restriction to the finitely generated ideals (which simply turn 
out to be those ideals whose value-functions are locally constant). 

Extending these notions to fractional ideals, we then compare the value-functions of 
an ideal ‘%B and its inverse ‘LI-‘. We give conditions for an ideal ‘U to be divisorial, that 
is, YI = (‘K’ )-I, and then easily exhibit an ideal which is divisorial but not finitely 
generated. (Recall that Int( V) is a Priifer domain, that is, every finitely generated ideal 
is invertible [lo, Proposition 2.31.) 

Finally, we globalize and consider the case where D is a Dedekind domain with 
finite residue fields. We characterize the unitary ideals by the collection of their 
m-adic value-finctions, at every maximal ideal m of D. Then we show that a prime 
ideal of Int(D) is invertible if and only if it is divisorial, and also, in the case where 
the characteristic of D is 0, if and only if it is an upper to zero which is maximal. 
It follows that if D is’the ring of integers of an algebraic number field, in particular 
if D = Z (the ring of integers), then no prime ideal of Int(D) is divisorial. ’ 

’ This paper was under preparation while the first two authors were finishing their book on integer-valued 
polynomials. This book has now appeared [5]. Some results, dealing with the local case, were included 
in the book; for consistency they are stated and proved in this paper. Note that our point of view here 
is somewhat different: for simplicity, we restrict ourselves to a discrete valuation domain V; moreover, a 
value-function is considered as a function on the completion V (whereas, in the book, it is considered as a 
function on V). Note also that the results derived here by globalization for a Dedekind domain are completely 
new. 
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1. Value-functions of unitary ideals and Skolem properties 

We let V be a rank-one discrete valuation domain with finite residue field, m be its 
maximal ideal, c’ be the corresponding valuation, and t be a generator of the maximal 
ideal. A polynomial can be viewed as a uniformly continuous function (from V to K) 
in the m-adic topology. We also consider the completion p of V, and we denote by 
I?t its maximal ideal. We continue to denote by v the extension of the valuation to the 
completion. 

Let 2I be an ideal of lnt( V). For a E V, if the ideal of values 2l(a) is a nonzero 
ideal, it is of the form mn, where n = inf {u(f(a)) 1 ,f~ %}. We thus define a function 
from V to N = N U {co}: to each UE V corresponds the integer n, if ‘U(a) # (0), and CC 
otherwise (u(0) = 00). In fact, we can extend this function to V, considering an integer- 
valued polynomial as a continuous function from p to p (in the m-adic topology). 
For each ideal 21 of Int(V), we finally obtain a function 

such that 

for XE p. We say that $1 is the value-function of the ideal 2I. 
If ,f is an integer-valued polynomial, we denote by Yf the value-function of the 

ideal generated by ,f, that is, for each XE 8: 

F(x) = G(x)). 

For each ideal ‘2l of Int( V), we then have 

Yvf = inf { Y/ / .f E %}. 

Let us give an example. Recall that the unitary prime ideals of Int( V), that is, the 
prime ideals above m, are in one-to-one correspondence with the elements of F [7, 
Proposition 5.41: to each XE ^v corresponds the maximal ideal 

‘JJ& = {J‘EInt( V) 1 f(a)E:iG}. 

The value-function of 9X, is the function such that 

Y!&(x) = 
i 

1, if x=c(, 
0, if x#N. 

We next prove that the value-function Yql of an ideal 21 must satisfy a property of 
continuity. 

Lemma 1.1. For each ideal !!I of Int( V), the vulue-jimction Yqr : p + N is upper 
semicontinuous, where N is endowed with the discrete topology. Thut is, for euch 
XE ?, there exists u neighborhood U ofx such thut Yy~,,(y) 5 Yv[(x) ,fbr euch YE U. 
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Proof. Let x be in p. If Y%(x)= co, the assertion is obvious. Hence we may 
assume that Yx(x) # oc: there is g~2I such that z@(x)) = !&a(x). Since y is a 
continuous function, there is a neighborhood U of x such that, for each YE U, one has 
u(g(y)) = v(g(x)), and in particular, Y%(y) < v(g(y)) = ‘u,(x). 0 

If an ideal 2I is unitary, that is, contains nonzero constants, its ideals of values are 
nonzero ideals: they contain the constants which lie in 2I. Hence YqI is a function 
from p to N. Since Ya is upper semicontinuous and p is compact, let us note also 
that Ya is bounded above. Using the fact that p is compact and the Stone-Weierstrass 
theorem [5, Theorem 111.3.41 (every continuous function from F to p can be uniformly 
approximated by an integer-valued polynomial), we can prove the following converse 
of Lemma 1.1. 

Lemma 1.2. Every upper semicontinuous function Y : p + N is the vulue function of 
a unitary ideal Cu of Int( V). 

Proof. Let ‘%= {gEInt( V) 1 Yq > Y}. Clearly ‘8 is an ideal. We show that it is the 
ideal we are looking for. As Y is upper semicontinuous and F is compact, Y is 
bounded above by an integer M. Hence, tM belongs to 2I and ‘?I is unitary. By definition 
YQJ = inf { Y$I g E 2I) > Y. It remains to show that Ya < Y. Fix x E B, and let it = Y(x). 
There exists a clopen neighborhood U of x such that Y(y) 5 n for each YE U. By the 
Stone-Weierstrass theorem there exists a polynomial f E Int( V) such that v(f( y)) = n 
for each y E U, and v(f(y)) > M for each ~$2 U. Then !Pj > Y, and hence, f E 2I. 
Consequently, Yqt(x) < Yj(x) = II = Y(x). 0 

The next theorem shows that the unitary ideals, are entirely determined by their 
value-functions [5, Theorem VII.3.71. Again, we use compactness of p and the Stone- 
Weierstrass theorem. 

Theorem 1.3. Let QI be a unitary ideul of Int( V), and f E Int( V). Then f E 91 ij’und 
only if yf 2 YG~. 

Proof. By definition, if f E %, then Yf > Ya. We must prove the converse. Since 2I is 
unitary, it contains a nonzero constant a, we let k = v(u). Suppose that Yf 2 YQ~. Then, 
for x E p, f(x) belongs to the ideal ‘%(x)p (generated in p by the ideal of values 
‘?I(x)). Since m(x) is dense in ‘%!I(x)~, there is in particular a polynomial gX E 2I such 
that v(f(x)-gx(x)) 2 k. Since f and gX are continuous, there is a clopen neighborhood 
U, of x such that v(f(z) - gX(z)) 2 k, for each ZE u,. Since p is compact, it can be 
covered by finitely many such clopen sets, say U1, . . . , vl,, and there are corresponding 
elements 91,. . . , gs of 9l such that v(f(z) - gi(z)) > k for ZE Ui. These subsets being 
clopen sets, we can require them to have pairwise empty intersections. From the Stone- 
Weierstrass theorem the characteristic function of each clopen set Ui can be uniformly 
approximated modulo mk by an integer-valued polynomial cpi. Let z E p. Then z belongs 



P.-J. &hen et al. IJournal of Pure and Applied Algebra 135 (1999) 207-223 

to one and only one Of these clopen sets, Say Uj; we have C$lj(Z) = 1 +l?j, and 
for i # j, where u(tl,) 2 k for each i. Letting g = C, YiCpi, then g E 9I and, 

211 

Vi(Z) = zi, 

.f‘Cz) - dz) = .fCz> - cpiCz)SjCz) - C Vi(Z>Yi(Z) = f(Z) - g,(Z) - C &Y;(Z). 
+j i 

Thus, for each ZE p, we have u(f(z)-g(z)) > k. Hence h = a-‘(f-g)E Int( V). Finally 
,f = g + ah belongs to 2I. 0 

Corollary 1.4. Let 2I and 23 he two ideals of Int( V). 
(i) Suppose that 23 is unitary. Then %!I C ‘23 tf and only if ‘&I > !&. 

(ii) Suppose that ‘?l and 23 are unitary. Then rU = 23 if and only if Ys = ul,. 

The last assertion expresses a Skolem property with respect to the unitary (but not 
necessarily finitely generated) ideals of Int( V). 

From Lemma 1.2 and Corollary 1.4, we immediately derive the following. 

Proposition 1.5. Every upper semicontinuous function Y : p ---f N is the vulue function 
of one and only one unitary ideal ‘3 of Int( V). 

Finally, we characterize the unitary finitely generated ideals. If the unitary ideal ‘u is 
generated by g1 , . . . , gk, then, for each XE p, there exists a neighborhood U of x such 
that i.(gi(y))=u(gi(x)) for each ~EU and each iE{l,...,k}. Hence, !&(y)= Yvr(x) 
for each ye U. Therefore the value-function Ya is continuous, that is to say, locally 
constant. In fact, Y% takes only finitely many distinct values since p is compact. 
Conversely, we have the following: 

Proposition 1.6. Every locully constant function Y : p 4 N is the value-function af 
one und only one finitely generated unitary ideal 9l of lnt( V). 

Proof. Let Cu = {gEInt( V) 1 Yg > Y}, as in Lemma 1.2. It follows from the previous 
results that ‘9l is the unique unitary ideal with value-function Y; it remains to show that 
it is finitely generated. The topological space p is covered by finitely many disjoint 
open sets U,, . . . , r/, and there are integers n, , . . . , n, such that Y(a) = ni, for a E U,. 
From the Stone-Weierstrass theorem there exists a polynomial f ??lnt( V) such that 
v( f (x)) = ni for x E Ui, in other words, such that Yf = Y. It is now straightforward to 
show that % = (a, f ), where a is an arbitrarily chosen nonzero constant in 2I. 0 

From Corollary 1.4 and Proposition 1.6, we immediately derive the following. 

Corollary 1.7. The value-function Yg of a unitary ideal ‘?I is locully constant if and 

only tf Cu is finitely generated. 

Remark 1.8. (1) Following Gilmer and Smith [ 14, Theorem 2.81, we could say in the 
case of Int(Z) that the value-function, restricted to Z, of a unitary finitely generated 
ideal is periodic. 
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(2) In general, the nonunitary ideals are not characterized by their ideals of values. 
Consider for instance the polynomial f = 1 + tX For each n the principal ideal (.f”) 
is such that its ideal of values is everywhere equal to D. Yet these ideals are clearly 
distinct. 

(3) In general, the unitary ideals are not characterized by their ideals of values 
on V only (that is, by the restriction of their value-function to V). For instance if 
c%R, is a maximal ideal corresponding to c( Q! V, then Y,(a) = 0 for each a E V, while 
!I& # Int( V). Note also that, in this case, YJ~I, restricted to V is locally constant (in 
fact, constant) while $9X, is not finitely generated. 

(4) If we restrict ourselves to finitely generated ideals, it is known that 9I and 23 are 
equal if and only if !&(a) = Y$(a) for each a~ V (this is the almost strong Skolem or 
strong Hilbert property [ 18, Lemma 2.61). This can easily be derived from the previous 
results. Indeed, suppose that 9I and 23 are finitely generated and that !&t(a)= Yin(a) 
for each aE V. Then Ygt = YB, since Yvt and u/, are locally constant and V is dense 
in p. Hence ‘!?I=‘%. 

(5) Note that our proof of Proposition 1.6 actually provides a new demonstration 
of the fact that a finitely generated unitary ideal of Int( V) can be generated by two 
elements, one of them being an arbitrarily chosen nonzero constant [lo, Proposition 
3.51. 

(6) Assuming that D is a one-dimensional local Noetherian domain, with finite 
residue field, the Stone-Weierstrass theorem applies if (and only if) D is also ana- 
lytically irreducible [6, Theorem p. 531. We could generalize the results of this section 
to this situation. In particular the unitary ideals are again characterized by their ideals 
of values: 2I = 23 if and only if %(x)5 = B(x)5 for each XE~ [5, Theorem VII.3.71. 

2. Value-functions of fractional ideals 

Since we wish to study invertible and divisorial ideals, it is natural to extend the 
previous notions to fractional ideals. We define the value-function lu, of a rational 
function cp by Y9(x) = u(q(x)). If x is a root of cp, then Y&x) = 00 and if x is a pole, 
then Iu,(x) = --oo. Then we define the value-function of a fractional ideal ‘U by 

Y&)= inf{Y&>I~E%}= inf{u(cp(x))I~EPI}. 

It is a function from p to Z U {-co, m}. In fact, if 2I is a nonzero fractional ideal, 
‘u,(x) is an integer for every XE p except at most finitely many. Indeed 2I contains a 
nonzero polynomial f, and Yqr(x) # x whenever x is not a root of f; also, since $3 
is a fractional ideal, there is a nonzero polynomial g such that g$U is an integral ideal, 
and Y%(x) # -00, whenever x is not a root of g. 

We first list some elementary properties of the value-functions. The first one is 
immediate: 
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Lemma 2.1. Let ‘LI, 23 be two fractional ideals of Int( V) and x E p such that &f(x) 
and Y$(x) are integers. Then Y,,(x) = Y$(x) + YB(x). In particular, tf Yvl and 
ul, take their values in Z, then Ygla = YQI + YSS. 

Corresponding to Lemma 1.1, we also have the following. 

Lemma 2.2. Let 9 be a fractional ideal. The value$atction Yq( is upper semicon- 
tinuous at each point x such that Yyf(x) # --oo. 

Proof. The result is clear if Y%(x) = 33. Otherwise there is a rational function 43 = f‘.!c~ 

in 21 such that x is not a root of f and q and Iu,(x) = Y2t(x). Thus Y(,, = Yf - Yq is 
continuous (that is, constant) in a neighborhood U of x. Since Y9t < ‘v,, Yvt is upper 
semicontinuous at x (that is, Y&J) 5 Yqt(x) for each Y E U). 0 

We may generalize the results of the previous section to a class of fractional ideals. 
Let us first give a definition: 

Definition 2.3. We say that a fractional ideal 2I of Int( V) is almost-unitary if there 
is a nonzero constant a E K such that a2I is unitary, that is, a2I is contained in Int( V) 
and contains nonzero constants. 

Of course the nonzero element a can be taken in V. Moreover, the value-function 
of an almost-unitary ideal is bounded below. We leave to the reader the verifications 
of the following assertions: 
_ Let 21 be an almost-unitary ideal and f E K[X]. Then Y, > (y’t if and only if f E 21. 
~~ Let 2I and 23 be two almost-unitary ideals. Then 2I= !B if and only if Yvr = Ys. 
~ An upper semicontinuous function from p to Z which is bounded below is the 

value-function of one and only one almost-unitary ideal. 
- A locally constant function (from p to Z) is the value-function of one and only one 

finitely generated almost-unitary ideal. 
~ The value-function of an almost-unitary ideal 2I is locally constant if and only if 2I 

is finitely generated. 
The value-function of an integral ideal of Int( V) is positive, hence it is bounded 

below. The value-function of a unitary ideal 2I is bounded above (by the valuation 
of every nonzero constant d E 2l). More generally, the value-function of an almost- 
unitary ideal is bounded. However, the converse does not hold. For instance, the prin- 
cipal ideal generated by the polynomial 1 + tX is not almost-unitary, yet its value- 
function is everywhere null. In fact, we may characterize the bounded-valued ideals as 
follows. 

Proposition 2.4. The valueTfunction of a fractional ideul 21 is bounded if and only tf 
there is a rational function q.~ with no root and no pole in p and u unitary ideul $23 
such that ‘2I = ~~‘23. 
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Proof. If 2I = ~23, where 23 is unitary and cp has no root and no pole, then ‘$1 is 
bounded since !I$ = YV + u/, (Lemma 2.1) (and Yq is, in fact, locally constant). 

Conversely, suppose that Ya is bounded. Write 2IK[X] = tjK[X]. We claim that 
$ has no root and no pole in ^Y. Indeed, a root of I+!J would be a common root 
of the elements of ‘2I, and this would imply YqI(x) = co. On the other hand, there 
is a nonzero constant a such that a$ E 9I; if x were a pole of $, we would have 
Y‘x(x) < ‘y,@(x) = -co. Then Y$ is bounded. The ideal Il/-‘rU contains some nonzero 
constants, it is contained in K[X], and its value-function is bounded. In particular it is 
bounded below and, for some integer II, the value-function of the ideal 23 = t”t,-‘2I is 
positive. Therefore 23 is a unitary ideal of Int( I’) and 2I = (~‘13, where cp = tPIC/ has 
no root and no pole. 0 

If the value-function of a fractional ideal never takes the value +co, it follows from 
Lemma 2.2 and compactness that it is bounded above. However, the next example 
shows that the value-function may fail to be bounded below even though it never 
takes the value -co. 

Example 2.5. For each integer n, consider the clopen set U, = t” + 6in+*. From the 
Stone-Weierstrass theorem, there is a polynomial fn such that 

Nfn(x)) = 
i 

0”’ 
if x E U,, 

9 ifx@ U,. 

Let ‘?I be the ideal generated by the polynomials {fn}nEN. The ideal ‘?I is fractional: 
for each II, Xfn is an integer-valued polynomial. The function YvI takes its values in 
Z (VI C K[X]), yet it is not bounded below (%11(P) < Yfn(P) = -n). 

3. Divisorial ideals 

We now consider the inverse ‘2-l = {v E K(X) 1 cp‘iY C Int( I’)} of a nonzero ideal 2t. 
If cp E ‘K1 and $ E 2I, then & is an integer-valued polynomial. Hence, for each x E p, 
we have v(cp(x)$(x)) > 0. In other words, we have the following: 

Lemma 3.1. Ij’2I is a nonzero Jiactional ideal of’Int( V), then Yqr-l > - YQ~. 

We shall see below that the inequality may be strict, even for a divisorial ideal 
(Example 3.8). However, if 2I is invertible we have the following: 

Proposition 3.2. If’% is an invertible ideal of Int( V), then Y%-I = -Y~I. 

Proof. Since 2I9-’ = Int( V), there are elements cpi,. . . , p,. in ‘9I, and $1,. . . , & in 
‘K’, such that cpl $r +. + cpr& = 1. Suppose that x E p, is not a pole of any of these 
functions. Then 

cp,(X)$l(X) + . ‘. + q&)$Mx)= 1. 
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There is some index i such that Cpi(x)$i(x) is a unit of p, hence 

y~li<x) I V($j(X))= -V(Cpi(X)) < - Y%(X). 

We may conclude that Y%-I (x) = -Y%(x), from the previous lemma. If now x is a 
pole of some (Pi, then Iu,(x) = --o;) and it follows again from the previous lemma 
that Y~~-I(x)= cc (similarly, if x is a pole of some $i, then Y?t-l(x) = -#x and 
Yvt(x) = co). 0 

Remark 3.3. It is known that Int( V) is a Priifer domain [ 10, Proposition 2.31. This fact 
can easily be derived from the results of the first section: let 2I be a nonzero finitely 
generated ideal of Int( V). The value-function Ya is locally constant, that is, continuous, 
and from the Stone-Weierstrass theorem there is a polynomial g E K[X] such that 
Yq =-Ya. If f E 2l, then Yq + Yf > 0, hence fg is an integer-valued polynomial. 
In particular, g E !!I-‘. Let 3= 2I‘K’. This is an ideal of Int( V) and Ys = 0 (since 
Yz I Yfg). From Theorem 1.3, we may conclude that 3 = Int( V), provided we establish 
that 3 is unitary. Write 2IIK[X] = hK[X], where h is a polynomial (that we may suppose 
to be in 2I). Then h-‘2I GK[X]. Since 2I is finitely generated, there is a nonzero 
constant a E V such that ah-‘% C Int( V). Hence ah-’ E ‘LI-‘. Finally a = huh-’ is a 
nonzero constant in 3 = %$U-‘, 

The converse of Proposition 3.2 is false. Our next result shows that the equation 
Ygr-l = -Yx and boundedness together imply divisoriality of ?I; Example 3.7 below 
shows the necessity of the boundedness condition. 

Proposition 3.4. Let ‘%!I be a fractional ideal of Int( V) such thut Yqc is hounded. 
If Y9u,,m, = - Ya, then 5!I is divisorial. 

Proof. Since u/, is bounded, write 2I = (P‘B, where 23 is unitary and cp has no pole 
and no root (Proposition 2.4). Denote by 23’: the divisorial closure of 23, that is, 
‘B), = (B-l)-‘. Since % is integral, ‘B3, is contained in Int( V) and a fortiori in K[X]. 
Assuming that Y%-1=-Y%, then YBp’ =-Y,, and YB,, > -Y%-l = ul, (Lemma 3.1). 
Therefore 2& C B (Corollary 1.4) hence !B3, = !B since the reverse containment always 
holds. It follows that % is divisorial, and so is ‘%!I = qn!B. ??

Let us now turn to the prime ideals of Int( V). Recall that the uppers to zero are 
the primes of the form ‘jJ4 =qK[X] nInt(V), where q is an irreducible polynomial 
of K[X], while the unitary prime ideals are the ideals ‘%R,. Moreover, ‘$34 C !IJ& if 
and only if q(c() = 0 [7]. Recall also that the uppers to zero which are maximal are 
invertible (in fact, their classes generate the Picard group of Int( V) [ 10, Proposi- 
tion 4.51); all other primes, that is, the ‘$J, which are not maximal and the %Rm,, 
are not divisorial. More precisely we can derive the following from [5, Theorem 
VIII.5.15]. 
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Proposition 3.5. Let ‘j.3 be a prime ideal of Int( V). The following assertions are 
equivalent: 

(i) the ideal v is invertible, 
(ii) the ideal ‘p is divisorial, 

(iii) the ideal !J_3 is an upper to zero which is maximal. 
In fact, if 5j.3 is a nonzero prime ideal which is not invertible, then $..’ = Int( V). 

Remark 3.6. In [5, Theorem VII1.5.15], the previous proposition was more generally 
established for Int(D), with D a local one-dimensional unibranched domain. In the 
present situation, Int( V) is a two-dimensional Prtifer domain [lo, Proposition 2.31. 
We could then note that for a Priifer domain R, 

(a) a maximal ideal m of R is either invertible or such that ‘9J-‘= R [ 12, Corollary 
3.1.31, 

(b) if the dimension of R is at most two, then a prime ideal !@ of R is either 
divisorial or such that $@-‘= R [ 12, Theorem 4.1.221. 

Most of the conclusions of the previous proposition could then be derived from these 
results (note also that it is very easy to prove that the unitary maximal ideals are not 
finitely generated, hence not invertible [5, Corollary V.2.41). 

For the maximal ideals, we could also use the easy fact that Int(D) is completely 
integrally closed if and only if the same holds for D [5, Exercise VI.101, and then note 
that, for a completely integrally closed domain, we have the same conclusion as (a) 
above [ 13, Corollary 34.41. 

We end this section with two examples. The first is a nondivisorial ideal ‘?I with 
YQ-1 =-YQr. 

Example 3.7. The ideal ‘u = (l/X)Cy, is not divisorial (since ‘@x is not divisorial), 
and yet YB- I = - YTa. Indeed, %I-’ =X$3,’ =X Int( V) [Proposition 3.51. If x # 0, then 
Yqt(x) = -v(x)+ Yv,(x) = -v(x), and Y2t-l (x) = v(x). If x = 0, then Y2r-, (0) = 00; we 
must show that Yqr(O) = -co. In case V is the valuation ring of the p-adic valuation in 
Q, let h,=(X-l)...(X-n+l)/n!, then h, E ‘?l and &(0)=(-l)“:. The general 
case may be handled in a similar way by using an appropriate regular basis of Int( V); 
see [5, Section 11.21. 

The second example is a divisorial ideal which is not invertible, as in [5, Example 
VIII.5.16]. We use it below for the global case [Example 4.31. 

Example 3.8. As in Example 2.5, we consider the clopen sets U,, = t”+i?i”+2. We then 
let Y, be the locally constant function with value 1 on (i, and 0 outside. It is the value- 
function of a finitely generated (thus invertible) unitary ideal 2l, [Proposition 1.61. The 
intersection Cu = nr=, ‘u,, is a divisorial ideal since it is the intersection of invertible 
ideals. The nonzero constant t is in each GU, (since v(t) 2 ly,(x), for each x E p) so 
that 2I is a unitary ideal. To show that 2l is not finitely generated, it suffices to prove 
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that Ya is not locally constant. We prove that, for each k, we have Ya(tk) 2 1 and 
Y’u(tk + tk+‘) =O. Indeed, !$(tk) > 1, since M&Q. On the other hand, the clopen 
set Wk = tk + tk+’ + Gk+’ does not meet any of the clopen sets U,. From the Stone- 

Weierstrass theorem, there is a polynomial gk whose value-function Ygu,, takes the value 
0 on wk and 1 outside. Hence Ygu,, 2 Y,,, and it follows from Theorem 1.3 that we 
have gk E ‘u,. Since this holds for each n, we have gk E ‘u[, hence ‘Pa < Yqu,,. Therefore 
!Q(tk + tk+‘) = 0. 

Finally, we note that Y%-I f-Y%, even though 9I is divisorial. Indeed, it follows 
from Lemma 3.1 that Ya-,(tk+tk+‘)> -YN(tk+tk+‘)=O, whence, from Lemma 2.2, 
we have YN-1(0)>0. However, again by Lemma 2.2, Y%(O)> 1, since Yt(tk)> 1. 

4. Globalization 

We now let D be a domain with quotient field K and are mainly concerned with the 
case where D is a Dedekind domain with finite residue fields. For each maximal ideal 
nr of D, D,,, is then a discrete valuation domain; we denote by o,~ the corresponding 
valuation and by D,,, the completion of Dm with respect to vii,. We define the m-adic 
value-function Y,,,,su of a fractional ideal ‘QI of Int(D) as 

Yin,&) = inf{Mcp(x)) I cp 6 al. 

This is a function from o^, to Z U { -00, co}. Recall that, for each maximal ideal nr of 
D, we have (Int(D)),,, =Int(D,) [4, Corollaire 5, p. 3031. Hence, for each fractional 
ideal 2I of Int(D), the function ‘ym,(~ is the value-function of the ideal VII, of Int(D,,). 
As in the local case, let us say that a fractional ideal of Int(D) is almost-unitary if 
it is the product of a unitary ideal by a nonzero constant. We derive immediately the 
following from Theorem 1.3. 

Theorem 4.1. Let D be a Dedekind domain with jnite residue fields and ‘$I, 23 be 
two almost-unitary (fractional) ideals of Int(D). Then 9I = 23 if and only if for euch 
maximal ideal m of D, we have ‘ym,~a = Yn,,~. 

The following result generalizes Corollary 1.7. 

Proposition 4.2. Let D be a Dedekind domain with jinite residue fields and 2l be 
an almost-unitury (fractional) ideal of bit(D). Then 2I is finitely generated tf und 
only if, for each maximal ideal m of D, the m-adic value-function Y,,,,s is locally 
constant. 

Proof. If 2I is finitely generated, then so is each ‘$I ,,,, and each m-adic value-function 
Y ,n,sa is locally constant. For the converse, we may as well assume that 9I is a unitary 
ideal (since a% is finitely generated if and only if QI is finitely generated), hence that 
Cu is contained in Int(D) and contains a nonzero constant d. There are finitely many 
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maximal ideals m containing d. For each such m, 2l+,, is finitely generated [Corol- 
lary 1.71 and we may choose a set of generators contained in 2L Let B be the ideal 
(finitely) generated by d and the finite union of these finite sets of generators. Then 
‘$I= B since, for each maximal ideal m of D, we have B,, = ‘&, (this is clear if m 
contains d, from the definition of ‘53, and in the other case, d is a unit in D,,,, and thus 
2& = ‘?I, = Int( Dm)). ??

For every Dedekind domain D with finite residue fields we can produce an example 
of a divisorial ideal of Int(D) which is not invertible, as in the local case [Example 3.81. 
We note that Alan Loper has also given such an example (in Int(Z)) [ 161. 

Example 4.3. Choose a maximal ideal m and a generator t of mD,,, in D. In 
Example 3.8 we considered a sequence of unitary finitely generated ideals ‘u, of 
Int(D,,,), each one corresponding to a locally constant function Yn (on o^,) such 
that lu, takes only the values 0 or 1, Yn(t”) = 1, and Yn(tk + tk+’ ) = 0 for each k and 
each 12. Let ‘S$, = (21u, n Int(D)) + m Int(D). Then %J3, is a unitary finitely generated 
ideal of Int(D). If Y,,,B~ denotes the m-adic value-function of 23,, then Y”,,d, = Y,,. 
On the other hand, note that for each maximal ideal n # m, the n-adic value-function 
of !B3, is null (since B3, contains m). The intersection 23 = flrZO 23, is a divisorial 
ideal since it is the intersection of invertible ideals. It contains m, hence it is a unitary 
ideal. Finally we show, as in Example 3.8, that the m-adic value-function Y,,,,s of 
23 is not locally constant, and it follows from Proposition 4.2 that 23 is not finitely 
generated. On the one hand, for each k, we have Y,,,,w(~~) 2 1, since 93 c Bk. On 
the other hand, we have seen in Example 3.8 that there is a polynomial gk (that 
we may choose in Int(D)) such that u,,,(gk(x)) 2 ly,(x), for each x E Dyu and each 
n, and also such that u,(gk(tk + tk+‘)) = 0. Since the n-adic value-tinction of ‘% 
is null, for n # m, it follows from Theorem 4.1 that gk g B,,. Finally gk E ‘& hence 

Ym,,Jtk + tk+‘) 5 &?r(g# + tk+‘)) = 0. 

We determine now which prime ideals are invertible or divisorial. We shall see that, 
as in the local case, the two conditions are equivalent [Proposition 3.51, but also that, 
contrary to this case, an upper to zero which is maximal is not necessarily invertible. 
We then start with some considerations on uppers to zero, relaxing first the hypothesis 
that D is a Dedekind domain. Recall that the uppers to zero of Int(D) are always of 
the form ‘!j_Jq = qK[X] n Int(D), where q is an irreducible polynomial in K[X] (that can 
be chosen with coefficients in D) [S, Corollary V.1.21. 

Lemma 4.4. Let D be a domain (with quotient$eld K), and q E D[X] be a polynomial 
which is irreducible in K[X]. If the upper to zero ‘$3, is invertible, then there exists 

a nonzero constant d E D such that (d/q) E ‘$3,‘. 

Proof. If ‘p,$J,’ = Int(D), then (‘@,K[X])(‘$,‘K[X]) = K[X]. Since ,P,K[X] = 

qK[X], we derive ‘$),‘K[X] = (l/q)K[X], and the result follows immediately. 0 
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When the upper to zero 5J3’p, is maximal, we also have the following: 

Lemma 4.5. Let D be a domuin (with quotient field K), q E D[X] be a polynomiul 
irreducible in K[X] such that the upper to zero $j3q is maximal, and d be a nonzero 
constant. Then the rational function d/q is such that (d/q) E ‘$3,’ tf and only if it is 
integer-vulued. 

Proof. Let m be a maximal ideal of D and a ED. Since ‘J.Jq is maximal, it is not 
contained in the maximal ideal ~9J3nr,a = {,f E Int(D) / f(a) E ‘n}, hence there is h E ‘J.I(t 
with h(a) 4 m. If (d/q) EV;‘, then (d/q)h is integer valued, and hence, (d/q)(a) ED,,,. 
This holds for each maximal ideal m and each a ED, hence it follows that d/q is integer 
valued. 

Conversely, if the rational function d/q is integer valued, its product by an element 
of VP, = qK[X] n Int(D) is an integer valued polynomial, and hence, (d/q) E !$I,‘. 0 

Proposition 4.6. Let D be u domain (with quotient field K), und q E D[X] be u poly- 
nomial irreducible in K[X] such that the upper to zero ‘$3, is maximal. Then the 
following assertions are equivalent: 

(i) VP, is invertible, 
(ii) there is a nonzero constant d E D such that (d/q) E $3;‘, 

(iii) there is a nonzero constant d E D such that the rutional,function d/q is integer 
vulued, 

(iv) ‘u,’ $ WI 
(~1 ‘P,’ # WD), 

(vi) ‘?qy is divisoriul. 

Proof. (i)+(ii) follows from Lemma 4.4 and (ii) @ (iii) from Lemma 4.5. 
(ii) + (iv) + (v) is obvious. 
(v) + (iv): By way of contradiction, suppose that ‘$3,’ 2 K[X] and let cp E ‘$?,I. 

Then there is a nonzero d in D such that dq E Int(D). Since ‘JJy is maximal and 
does not contain d, there are elements h E ‘$Ip, and f E Int(D) such that 1 = h + df. 
Multiplying by cp, we obtain y = cph + (pdf E Int(D). Thus ‘@,’ = Int(D). 

(iv)+(i): If $9, is not invertible, then ‘p,‘$, = $vq. Hence (‘$Ip,KIX])$JC,’ = 
‘$,K[X], that is, (qK[X])!@P,’ =qK[X]. It follows that v,’ C K[X]. 
Hence (i)-(v) are equivalent. On the other hand, (i)+(vi)=+(v) is obvious, and 
hence, (vi) is also equivalent to (i). 0 

Returning to the case where D is a Dedekind domain with finite residue fields, we 
show now that a prime ideal is invertible if and only it is divisorial. Recall that the 
unitary prime ideals above a maxima1 ideal m of D are maximal and in one-to-one 
correspondence with the elements of DTR: to SI E o^,, corresponds the maximal ideal 

$93 ‘n.r = {f E Int(D) I vm(,f(mx>> >O}. 
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Recall also that an upper to zero +p, is contained in an $%I&, if and only if q(a) = 0. 
(All this can immediately be derived from the local case [7].) 

Proposition 4.7. Let D be u Dedekind domain with jinite residue fields and $3 be u 
prime ideul of Int(D). 

(i) ‘$ is invertible if and only tf it is divisoriul. In j&t, tf ‘@ is a nonzero prime 
ideal which is not invertible, then ‘UP’ = Int(D). 

(ii) If ‘$3 is invertible, then it is an upper to zero which is maximal. 

Proof. If ‘p is a maximal upper to zero which is not invertible, we have seen that 
VP-’ = Int(D) [Proposition 4.61. It remains to show that we have the same conclusion 
if ‘q is unitary, or an upper to zero which is not maximal. 
- First consider the case where $q = 9Ji m,cc is a maximal unitary ideal. It follows from 

Proposition 3.5 that (‘&,-‘= Int(D,,). For each maximal ideal n# m, we have 
‘p, =Int(D,), whence again (!&-l = Int(D,,). Therefore ‘@-’ =Int(D) (it is well 
known that, for each fractional ideal !!I and each multiplicative subset S, we have 

(@)s c (a,)-‘). 
- Next consider the case where ‘$3 =qK[X] n Int(D) is an upper to zero which is 

not maximal. Let cp E $$.-‘. For some maximal ideal m, VP,, = qK[X] n Int(D,,,) is 
not maximal. For such an m, cp E (!&,)-‘, and it follows from Proposition 3.5 that 
cp E Int(D,,,). In particular, cp E K[X] and, for each a ED, we have q(a) E Dm. Now 
let n be a maximal ideal for which $&, is maximal, so that ‘$ is not contained in 
any unitary prime ideal above n. For each a ED, there is a polynomial g E ‘@ such 
that g(a) 6 n. It follows that cpg is integer valued and that q(a) ED”. Finally we 
may conclude that q E Int(D). 0 

Contrary to the local case, we shall see that a maximal upper to zero is not al- 
ways invertible when the characteristic of D is not zero [Example 4.111. We first 
study under which condition no prime of Int(D) is invertible. This is linked with the 
Skolem property and the notion of d-ring simultaneously introduced by Brizolis [l] 
and Gunji and McQuillan [15]. So let us recall the following [5, Proposition VII.2.3; 
15, Proposition 11). 

Proposition 4.8. Let D be a domuin (which is not u held). The following assertions 
ure equivalent: 

(i) each integer valued rational function on D is in fact u integer vulued poly- 
nomial, 

(ii) for each non constant polynomiul f in D[X], there exists an element a ED 
such that f(a) is not u unit of D, 

(iii) for each non constant polynomial f in D[X], the intersection of the maximal 
ideals m of D for which f has a root modulo m is (0). 
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Under these equivalent conditions, D is said to be a d-ring. It is known that if 
D is a Noetherian d-ring of characteristic zero, then no upper to zero in Int(D) is 
maximal [5, Lemma VII.S.ll]. In fact, for a Dedekind domain with finite residue 
fields, whatever its characteristic, the d-ring property is equivalent to the fact that no 
(maximal upper to zero) prime ideal is invertible: 

Proposition 4.9. Let D be u Dedekind domain with jinite residue jields. The JbllowCny 
assertions are equivalent: 

(i) D satisjies the Skolem property, 
(ii) D is u d-ring, 

(iii) no prime ideal of Int(D) is invertible. 

Proof. The equivalence of (i) and (ii) is recalled here for completeness. It holds even 
if D is a one-dimensional Noetherian domain with finite residue fields [5, Corollary 
VII.5.3]. 

Suppose now that some prime ideal of Int(D) is invertible. Such a prime is a maximal 
upper to zero sp, [Proposition 4.71. It follows from Proposition 4.6 that there is a 
nonzero constant d such that the rational function d/q is integer valued (but clearly 
not a polynomial). Therefore D is not a d-ring. 

Conversely, if D is not a d-ring, some non-constant polynomial q in D[X] takes 
only unit values on D. We may choose q to be irreducible in K[X] [5, Exercise 
VII.61. Clearly the upper to zero VP, is principal (generated by q), thus a fortiori 
invertible. 0 

Although it follows from this proof that if there is an invertible prime ideal, then 
there is a principal prime ideal, we emphasize that, even in the local case, an invert- 
ible (upper to zero) prime ideal is not always principal (for a characterization of the 
principal prime ideals, see [5, Proposition VIII.5.61). 

It is known that the global rings of arithmetic, that is, rings of integers of an al- 
gebraic number field or a function field, are d-rings [5, Examples VI1.2.121. From 
Propositions 4.7 and 4.9 we then derive the following: 

Corollary 4.10. Let D be the ring of integers of an algebraic number field (resp., u 
function jield), that is, the integral closure of Z (resp., lF4[T]) in u jinite algebrait 
extension of Q (resp., F,(T)). Then there are no divisorial prime ideals in Int(D). In 
,fact, for each nonzero prime ideal ‘$3 of Int(D), we have VP’ = lnt(D). 

We are ready for an example of a maximal upper to zero which is not invertible. 
(This is essentially the same as in [5, Exercise V.141 where we gave an example of a 
d-ring with a maximal upper to zero, without noting, however, that no prime of Int(D) 
was invertible.) 
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Example 4.11. Let D = F,[T] be the ring of polynomials with coefficients in a finite 
field iF, of characteristic p, and let g =XJ’ + 7’. Then ‘$?,, is a maximal upper to zero 
in Int(D) which is not invertible. 
- Let us show that ‘@, is maximal. Fix a maximal ideal m = fD of D. It suffices to 

show that g has no root in the completion D*n;. This completion is isomorphic to 
the ring of power series E,[[Z]] with f corresponding to Z and 5, a subfield of [F,.. 
Writing T in F,[[Z]] as b(Z) = bo + btZ + h2Z2 +. . . , we claim that bi # 0. Indeed, 
if f = fo + fi T f. . + fnT”, then Z = fo + Jib(Z) +. . + fnb(Z)” in E,[[Z]]. Thus 
fo+ flbo+...+ fg{=O and fib, +2fzbobl +...+nf,bz-‘bl =l. On the other 
hand, for each a ED,,,, writing a = c ciZ’ in [F,[[Z]], we obtain MP = C $Z’p. Thus 
never ‘MJ’ + T = 0. 

_ It follows from Corollary 4.10 that q, is not invertible. 

Another reason why ‘qs is not invertible in the previous example, in connection with 
the fact that D is a d-ring, is that g has a (multiple) root modulo each maximal ideal 
m of D. Assuming now that D is a Dedekind domain with finite residue fields, we 
may complete the characterization given in Proposition 4.6 as follows. 

Lemma 4.12. Let D be u Dedekind domuin with finite residue fields, and q E D[X] be 
a polynomial which is irreducible in K[X] such thut the upper to zero vy is maximul. 
Then ‘$3, is invertible if and only if the set of muximal ideals 111 of D such thclt q 
has a root module m is .finite. 

Proof. Suppose that $J, is invertible. It follows from Proposition 4.6 that there is a 
nonzero constant d E D such that (d/q) is integer valued. If m is a maximal ideal of 
D such that q has a root modulo m, that is, q(a) em, for some a ED, then d E m. 
Therefore the set of maximal ideals such that q has a root modulo m is finite. 

Conversely, for each maximal ideal m of Int(D), the ideal (‘$,),n is maximal, hence 
invertible in Int(D,,) [Proposition 3.51. It follows from Proposition 4.6 that there is 
a nonzero constant d E D such that (d/q) E Int(D,,r). If the set of maximal ide- 
als such that q has a root modulo m is finite, let ml,. . . ,m, be these ideals and 
d,, . . , d, be the corresponding nonzero constants. It follows that the rational function 
(n:=, di)/q is integer valued. From Proposition 4.6 again, we may conclude that ‘@, is 
invertible. 0 

If D is of characteristic 0, we can derive that the maximal uppers to zero are 
invertible from the previous lemma and the following. 

Lemma 4.13. Let D be u Dedekind domain with finite residue fields and q E D[X] be 
u polynomiul which is irreducible in K[X] such that the upper to zero ‘+qy is mrtximal. 
If D is of charucteristic 0, then the set of maximnctl ideals m of D such that q hus u 
root module m is ,$nite. 
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Proof. For each maximal ideal m of D, q has no root in Dyn, since ‘qq is maximal. 
Suppose that m is a maximal ideal of D such that q has a root modulo m. It follows 
from Hensel’s lemma [ 19, Theorem (44.4)] that such a root of q must be a multiple 
root, hence also a root of the derivative q’. Since q is irreducible and the characteristic 
of D is 0, q and q’ are coprime in K[X]. Hence there are polynomials u and v, with 
coefficients in D, and a nonzero constant d such that uq + vq’ = d. Then nt contains d. 

Finally there are finitely many such maximal ideals nt. 0 

As in the local case, we thus obtain a complete characterization: 

Theorem 4.14. Let D be u Dedekind domain with jinite residue fields and +j3 he 
u prime ideal of Int(D). If’ D is of characteristic 0, the following ussertions ure 
equivalent: 

(i) the ideul $3 is invertible, 
(ii) the ideal $3 is divisoriul, 

(iii) the ideal ‘$3 is an upper to zero which is maximal. 
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